Being Productive With Emacs

Part 2

‘z"\./

Phil Sung

sipb-iap—-emacs@mit.edu
http://stuff.mit.edu/iap/emacs
Special thanks to Piaw Na and Arthur Gleckler

Previously...

* Emacs as an editor

- Useful features
- Motifs in emacs

— Learning more

Previously...

* Acquiring Emacs
— Already installed on Athena (v.21)

— Ubuntu: emacs-snapshot-gtk package (v.22)

— Gentoo: emacs-cvs package (v.22)

- Windows: EmacsW32 installer

Previously...

* Learning more about emacs

— Look up an existing function or key
*C-h f,C-h k

— Apropos (search for commands)
*C-h a

— Help about help facilities
e C-h C-h

Previously...

* Learning more about Emacs
- Emacs tutorial
eC-h t
- Emacs manual

*M-x info, select emacs

Previously...

* If you're stuck...

- Cancel: C-g

- Undo:Cc-/ orCc—_

Today

* Customizing Emacs
* Elisp basics

* Defining a new command

Customizing Emacs

* Almost every aspect of the editor can be
customized
— More fine-grained control than major/minor modes
- In general, use M-x eval-expression

— Show trailing whitespace on lines
(setg show—-trailing-whitespace t)

— Show column numbers in mode line
(column—number—-mode t)

Customizing Emacs

* Customization buffer: M—x customize

— Browse, point and click for customization options

— No elisp necessary, but capabilities are limited

Review: running elisp code

* Evaluate elisp withM-x eval-expression
— Example functioncall: (+ 2 4 6)

* Get or set variables:

- sentence—-end-double-space

- (setg inhibit-startup-message t)
* Sometimes these correspond to commands:

- (forward-char) Issame as C-£f or
M-x forward-char

Writing elisp code

* Use the *scratch* buffer for playing with
elisp

- C-x C-e to evaluate

- Move to ~/ . emacs for permanent changes

Your .emacs file

e C-x C-f ~/.emacs
* Elisp code here is loaded when Emacs starts

— Run any valid lisp code here

— Set variables, keybindings to your liking

— Define your own commands

* M-x customize works by adding code to
your .emacs

Why bother with elisp?

* Macros record and play back key sequences

— Start recording macro: C-x (
- Stop recording macro: C-x)
— Execute last macro: C-x e

* Great for automating tedious tasks

—C—XxX e e e...

- C—-u 100 C—-x e

A OO O O O O

Macro example

.00 12 programming .00 programming

.001 15 sicp .001 sicp

.002 15 circuits .002 circuits

.003 15 linear-systems .003 linear-systems

.004 15 digital .004 digital

A OO O OO O O

.011 12 signal-proc .011 signal-proc

M-f M-f M-d C-n C-a repeatedly

Let's remove this

column

Why elisp?

* Macros only repeat canned key sequences

* Sometimes you need:

— Calculations

— Control flow

— User interaction

— Additional features

— Maintainability

Elisp iIs...

* an implementation language
* a customization language

* an extension language

Elisp for implementation

* Example:M-x calc

- C-h f to see where calc is defined

— RET on filename in help buffer to view source code

Elisp for customization

* Set variables and options
* Persistent customizations can go in .emacs

* ComparetoM-x customize

Elisp for extensions

* Alter behavior of existing commands
* Define your own commands, functions

* Define new modes

Why elisp?

* It's the implementation language

* Dynamic environment

— No need to recompile/restart emacs

— Easily override or modify existing behaviors

* Simple one-liners are sufficient to do a lot!

Getting started

* Similar to lisp and scheme

* Use *scratch™ buffer as a temporary work space

- oractivate l1isp—-interaction—-mode
anywhere

- C—x C-e after an expression to evaluate it
- oruse M—-x eval-expression (M-:)

* Example: setting a variable
- (setg undo-1limit 100000)

Getting started

* Evaluating an expression can mean

- Performing some computation/action
— Displaying the value of a variable

— Defining a function for later use

Basic elisp

* These are expressions (“atoms”)
- 15
— “Error message”
— best-value
* These are also (“compound”) expressions
- (+12)

— (setq include-all-files t)

Setting variables

* Set variable by evaluating
(setqg undo-l1limit 100000)

- l.e.doM-: (setg ...) [RET]
* Read variable by evaluating undo-1imit
—l.e.dOM-: undo-limit [RET]

* Find out more about any variable with C-h v

Common customizations

* Configuration options

* Set your own keybindings

Configuration options

* Some customizations are done by setting
variables

- (setqg undo-1limit 100000)
- (setg enable-recursive-minibuffers t)

- (setg fill-column 80)

Configuration options

* Other options are exposed as their own
functions

- (menu-bar-mode nil) (Hide menu bar)

- (Lcomplete—mode)
(Show completions continuously)

- (server-start) (Start emacs server)

More about variables

* Many variables are boolean

— Usually a distinction is only made between nil and
non-nil values (e.g. t)

* Look in function documentation to see which
variables can alter the function's behavior

* C-h v to get documentation for a variable

Key bindings

* We've seen two ways to invoke commands
- C-x n w (keyinvocation)
- M-x widen (M-x invocation, or invoking by name)

* Emacs binds each key to a command in a
keymap
— A keymap can be specific to a mode or feature

— Bindings may be changed at any time

Customizing key bindings

* (global—-set-key
[£2]
'split-window—-horizontally)

* (global-set-key "\C-0" 'find-file)

* (global-set-key "\C—-x\C-\\"
'next-1line)

binds to C-x C-\

Customizing key bindings

* A binding can be set to apply only in a particular mode

- (define-key text—-mode-map
w \C_Cp"
'backward-paragraph)

bindsto C-c p

Keybindings

* What keys can you assign?

- Reserved for users:
*C—c [letter]

— Reserved for major and minor modes:
*C-—c C-[anything]
*C—c [punctuation]

*C—-c [digit]

Calling commands

* Any command you use can be invoked
programmatically by elisp

- Often, M-x my-function is accessible as
(my—-function)

- For key commands, look up the full name first

* Use commands as building blocks for more
complex behaviors

Hooks

* Specify a custom command to run whenever a
particular event occurs, e.g.
— when a particular mode is entered
— when any file is loaded or saved

- when a file is committed to CVS

Hooks

* (add—-hook
'vc—checkin—-hook
'(lambda ()
(send-email-to—-group)))

Hooks

* (add-hook 'java-mode-hook
'(lambda () (setq indent-tabs-mode t)
(setg tab-width 4)
(set—-fill-column 80)))

Hooks

* General template

— (add—-hook 'name—-of-hook
'(lambda () (do-this)
(do—-that)
(do—-the—-other-thing)))

Hooks

* To find available hooks:

— Every major mode has a hook

- M-x apropos-variable and search for
"hook"

Defining your own functions

* (defun function—name ()
“Description of function”
(do—-this)

(do—-that)

(do—the—-other-thing))

* |nvoke with:
(function—name one two ...)

Strategy for making functions

* Find key commands that would have desired
result

* Replace key commands with elisp function calls

A simple function

* (defun capitalize-backwards ()
"Capitalize last letter of a
word."
(backward—-word)
(forward—-word)
(backward—-char)
(capitalize—-word 1))

Not every function iIs a command

* Functions need arguments:

- (defun square (x) (* x X))
(square 5) ==> 25

* Commands don't say what arguments to
substitute
- M-X square ==> 77

* Interactive specification needed to say what
arguments to fill in

A simple command

* (defun capitalize-backwards ()

"Capitalize last letter of a
word."

(interactive)
(backward-word)
(forward—-word)
(backward—-char)
(capitalize-word 1))

Problem

* This command moves the cursor

— This can be distracting if the user isn't expecting it

Restoring the cursor

* (defun capitalize-backwards ()
"Capitalize last letter of a
word."

(interactive)

(save—excursion
(backward—-word)
(forward—-word)
(backward—-char)
(capitalize—-word 1)))

Useful functions

(point)
(point-max)
(current-buffer)

(message “This is the answer: %s”
answer)

| ocal variables

* (let ((a new—-value)
(b another-value)
.)
(do—something)
(do—something—-else))

Example: counting word length

* (defun word-length ()
"Prints the length of a word."
(interactive)
(save—excursion
(backward-word)
(let ((a (point)))
(forward—-word)
(let ((b (point)))
(message "Word is %d letters"

(- b a))))))

Getting help with elisp

* Manuals
- M-x info, then select elisp or eintr
* Learning by example

— Function documentation (C-h f orC-h k)
always gives a link to the function's source code

Next week...

* Control flow
* User interaction
* Commands for manipulating text

* Other extension methods

